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Over 15% of the data sets catalogued in the Gene Expression
Omnibus Database involve RNA samples that have been pooled
before hybridization. Pooling affects data quality and inference,
but the exact effects are not yet known because pooling has not
been systematically studied in the context of microarray experi-
ments. Here we report on the results of an experiment designed to
evaluate the utility of pooling and the impact on identifying
differentially expressed genes. We find that inference for most
genes is not adversely affected by pooling, and we recommend
that pooling be done when fewer than three arrays are used in
each condition. For larger designs, pooling does not significantly
improve inferences if few subjects are pooled. The realized bene-
fits in this case do not outweigh the price paid for loss of individual
specific information. Pooling is beneficial when many subjects are
pooled, provided that independent samples contribute to multiple
pools.

Messenger RNA samples are often pooled in a microarray
experiment out of necessity (1, 2) or in an effort to reduce

the effects of biological variation (3–6). The idea behind the
latter motivation is that differences due to subject-to-subject
variation will be minimized, making substantive features easier
to find (7–13). This is often desirable when primary interest is not
on the individual (e.g., making a prognosis or diagnosis), but
rather on characteristics of the population from which certain
individuals are obtained (e.g., identifying biomarkers or expres-
sion patterns common across individuals). Because pooled de-
signs allow for measurement of groups of individuals using
relatively few arrays, they have the potential to decrease costs
when arrays are expensive relative to samples.

Despite the potential advantages, pooled designs are often
discouraged because of concerns regarding the inability to
identify and appropriately transform or remove aberrant sub-
jects and the inability to estimate within population variation.
These concerns are uncontroversial when all subjects in a study
are pooled and only technical replicates are obtained. However,
there are pooling strategies that compromise between pooling
everything and only considering individual biological samples on
individual arrays. Theoretical advantages of such designs have
been established (10, 11, 14). A brief review is given here.

A microarray experiment to estimate gene expression levels
consists of extraction and labeling of RNA from ns subjects,
hybridization to na arrays, followed by scanning and image
processing. Assuming that sufficient data preprocessing has been
done to remove artifacts within and across a set of arrays, the
gene expression measurements for a gene denoted by x1, x2, . . . ,
xna

are considered independent and identically distributed sam-
ples from a distribution with mean �, the quantity of interest. The
average of the measurements is used to estimate �. Because the
processed measurements are affected primarily by biological and
technical variation, denoted ��

2 and ��
2, respectively, the xi are

given by

xi � � � � i � � i

� T�i � � i

Assuming that RNAs average out when pooled (biological
averaging), T�i � 1�rs �k�1

rs Tik, where rs denotes the number of
subjects contributing RNA to a pool and Tik is the kth subject’s
contribution to the ith pool. Note that individual subjects
contribute to one and only one pool, and in this way the pools
contain biological replicates. Through biological averaging, the
variability of �i is reduced to ��

2�rs. The variance of the estimator
for � is then given by 1�np(��

2�rs � ��
2�ra), where np is the total

number of pools and ra is the number of arrays probing each pool.
The precision to estimate expression levels and the power to
identify differentially expressed genes are inversely related to
this variance, which is reduced by pooling because, for a pooled
design, rs � 1. The larger biological variability is relative to
technical variability, the larger the overall variance reduction
and benefit of the pooled design.

The utility of pooling in practice depends on the extent to
which the assumed conditions hold for microarray data. Previous
studies provide limited support for biological averaging (6) and
variance reduction in pools (13), whereas one study recommends
not pooling at all (15). In the latter study, a design with 16 arrays
(eight individuals in two conditions) is compared to one with 2
arrays (pool of eight in each condition). Clearly, because the
number of arrays is decreased without increasing the number of
subjects, the two designs are not comparable; and, furthermore,
questions regarding gene identification cannot be answered
without biological replicates of both individuals and pools.

In short, key questions regarding the pooling debate remain
unresolved:

1. To what extent is variability reduced by pooling?
2. Is biological variability larger than technical variability for

most genes?
3. To what extent does biological averaging hold?
4. Are inferences regarding differential expression comparable

for pooled and nonpooled designs?

We report here on the results of a large Affymetrix experiment
with individuals and pools of varying sizes in two biological
conditions designed to address these questions.

Methods
Supporting Information. For further details, see Supporting Text
and Figs. 7–14, which are published as supporting information on
the PNAS web site.

Data Collection. Thirty female inbred Wistar Furth rats were
obtained from Harlan Sprague–Dawley at 5 weeks of age. The
rats were group housed and provided Teklad diet (8604) and
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acidified water ad libitum. All rats were maintained with a
light�dark cycle of 12 h. After a 2-week period of acclimation,
rats were randomly assigned to a control or a retinoic X receptor
treatment with an agonist LG100268, and were pair-fed every
24 h for 14 days. The experimental diets were prepared by adding
LG100268, 100 mg per kg of diet meal (wt�wt), to the appro-
priate amount of ground rat meal diet and mixing for 15 min in
an industrial size mixer in the chemical fume hood. All diets were
double bagged and stored at �20°C for 1 week. Body weight was
monitored by weighing at 2- or 3-day intervals. After consuming
the diets for 14 days, rats were removed from the study for tissue
collection.

RNA samples were obtained from 15 rats in each condition.
The estrus stage of each rat is provided in the data supplement.
Four RNA samples were not sufficient for hybridization (see Fig.
1). Affymetrix RAE230A chips were used to measure gene
expression for 15,923 genes for the remaining 26 animals. A1 and
B1 were removed after preliminary analysis because they were
farthest from other arrays in dendrograms similar to those shown
in Figs. 8–10. The remaining 12 from each condition were chosen
to construct 12 pools of pairs, 8 pools of triples, and 2 pools of
12 subjects. To obtain cRNA samples, total RNA was extracted
from individual mammary glands; 5 �g of each RNA sample was
reverse transcribed, synthesized to double-stranded cDNA, and
then transcribed to biotin-labeled cRNA targets which were then
fragmented. For the individuals, each chip was hybridized by
using 10 �g of the fragmented cRNA targets; for the pools, equal
amounts of fragmented targets were combined from the indi-
viduals to give a total of 10 �g. We note that the pooling was
done after the labeling reactions, primarily to ensure enough
starting material for individuals and multiple pools. When lack
of sufficient tissue motivates pooling, samples would be com-
bined before labeling and results could differ from those pre-

sented here. Within pool group, the processing of samples was
randomized across treatments and Affymetrix scanners. To
estimate technical variability, A3, B3, AQ, and BQ were analyzed
using additional microarrays. Fig. 1 gives a schematic of the
experiment. A single individual sample hybridized onto a single
array is referred to as ‘‘1 on 1’’; a pool of n subjects hybridized
onto a single array is ‘‘n on 1’’; M � np � n unique subjects
hybridized onto np arrays (a pool of n onto each array) will be
referred to as ‘‘M on np.’’ N technical replicates of a single array
containing n subjects are denoted by “n on 1 � N.”

Preprocessing and Normalization. Robust multiarray analysis
(RMA) was used to preprocess and normalize the raw Af-
fymetrix GeneChip data (16). Individuals, pools, and technical
replicates were processed together. RMA fits a linear model to
the log probe intensities for each probe set. The linear model
includes a sample effect, a probe effect, and an error term. Fig.
7 shows standard error estimates of the sample effects for each
array. Because RMA has been shown to give very low false-
positive rates without filtering, and potentially inflated false-
negative rates after filtering, all 15,923 genes were used in the
analysis. RMA has been demonstrated to provide improved
precision over the default algorithms provided by Affymetrix,
which generates MAS5.0 signals (17). We observe similar findings
for this data set (Figs. 8–10).

Comparison of Designs. For each design, moderated t statistics (18)
between control and treatment samples were obtained for every
gene if more than three arrays were available (see Supporting
Text). With fewer than three arrays, a fold change was calculated.
For the rank plot (see Fig. 6A), the statistics were ranked from
largest to smallest. The top N genes made up a list of size N. For
the false discovery rate (FDR) plot (see Fig. 6B), the FDR of a

Fig. 1. Schematic of the designed experiment. Each box represents one array; X’s indicate samples that were not hybridized (A13, A15, B4, B7) or were hybridized
but not used in construction of the pools (A1, B1). Here, A is control and B is treatment.
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list was estimated by using the q value approach (19). Each color
in each plot represents one potential design and reports the
percentage of differentially expressed (DE) calls in common
between that design and a reference for lists of fixed size or fixed
FDR (note that lists with fixed FDR may vary in size). The
reference list was generated by using Student’s t statistics
calculated on the full set of 12 individuals in each condition. The
percentage in common is referred to as accuracy. Each vertical
tick on the FDR plot marks 100 genes identified at the specified
level of FDR. For some designs, a number of subsets could be
chosen to generate a list. For example, with a 3 on 3 design, (3

12)2

subsets were possible. We considered all subsets (or 100 subsets
at random if �100 were available). The solid line gives an
average performer across the subsets; the dashed line gives the
worst case performer. Plots were also generated by using refer-
ence lists obtained from a Wilcoxon statistic and a statistic
measuring the posterior odds of differential expression (20).
Results remained unchanged.

Results
Pooling Reduces Overall Variability. Gene-specific sample variances
were calculated across conditions for individual samples, pools
of 2 and 3, and technical replicates. Fig. 2 shows nearly perfect
stochastic ordering with decreasing variability from individuals
to technical replicates. However, this trend does not hold for
each gene. Variability across technical replicates was larger than
variability across individuals for 31% of the genes. The negligible
biological variability estimated here may be due to truly small
biological variability or to poorly designed probe sets that allow
for little hybridization or sufficient cross-hybridization. What-
ever the reason, for genes with relatively small biological vari-
ability, there are negligible gains by pooling.

Pooling Results in Biological Averaging for Most Genes. To investi-
gate whether RNA samples average out when pooled (biological
averaging), mathematical averages (referred to here as averages)
across individuals were compared to the corresponding pools.
Some distortion is expected as the original RNA abundance
undergoes a series of possibly nonlinear transformations during
the measurement process. In the absence of pooling, individual
samples are transformed separately, whereas when pooling is

done, the transformation applies to the pool rather than to each
individual sample. Any averaging that takes place on the scale of
raw RNA abundance is transformed during data generation and
processing, and as a result measurements from a pool may not
correspond to an average of individual samples that comprise the
pool.

Fig. 3 gives an example. Shown is one gene where the averages
on the raw intensity scale are quite similar across the individuals
and pools. After a log transformation, as often recommended for
microarray data (20–25), the averages in the individuals are
smaller than those in the pools. This is a biological realization of
the well known Jensen’s inequality (26), which states that the
average of log transformed values will always be less than or
equal to the log of the average of the untransformed values. The
fact that we observe this difference here is evidence of biological
averaging (pools look like an average of untransformed individ-
ual values). The difference between the average of the log
individuals and the log of the pools is exacerbated by outliers
(e.g., arrays 3 and 10 in Fig. 3). Part of the reason for this is that
for the case of individuals, outliers are first attenuated by a log
transform and then averaged. For the pools, the attenuation has
less of an effect because the outlier has already been averaged
with other samples. Fig. 4A shows that this artifact affects �25%
of the genes.

Another factor potentially affecting agreement between pools
and their averages is that the actual amount of individual RNA
contributing to each pool may vary across individuals, despite
careful quality control measures. The effects of this on pooling
have been considered (27). Despite distortions, we find that
pools are more similar to averages of the contributing samples
than they are to other pools (Fig. 13). Furthermore, the den-
drogram in Fig. 9 shows that pools of two cluster closely with
their averages. The same holds for pools of three. These plots
suggest that biological averaging occurs for most, but not all
genes. Furthermore, for the genes where biological averaging
does not occur, similar amounts of distortion are often observed

Fig. 2. Gene-specific sample variances: cumulative distribution functions of
gene specific sample variances are calculated by combining estimates across
biological conditions. Density estimates are shown in Fig. 11.

Fig. 3. Distorted gene. Expression values are shown for individuals, pools,
and technical replicates. The � (x) indicates the mathematical average of the
raw (log) data; the m indicates the median of the values. The numbers refer to
arrays (control condition). Of importance here are arrays 3 and 10, where
expression values for this gene differ from the majority. The effects of arrays
3 and 10 are attenuated by the values they are pooled with (11 and 2,
respectively, for the pools of two).
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in both control and treatment conditions and, as a result, the
identification of DE genes is not grossly affected (Fig. 4B).

Identifying Differentially Expressed Genes. Designs without biological
replicates. Without biological replication, outliers cannot be
found and appropriate variance components cannot be esti-

mated. Fig. 5 gives an example of how this can adversely affect
DE inferences. Each affected gene appears to be DE when only
technical replicates are considered. It is clear when biological
replicates are available that the first DE call is caused by outliers
and the second DE call is caused by an underestimation of the
gene-specific variance. The last gene shown is not affected by an
outlier. Correct inferences regarding DE would be made in this
case using only technical replicates. Fig. 6A shows that this latter
case is most representative of the full data set as similar lists of
DE genes are identified when using true biological replicates
(e.g., 12 on 4 � 12 on 1 � 4; see Methods for terminology). In
fact, the same level of accuracy is only slightly reduced when
single arrays with pools of 12 (12 on 1) are considered. This is
not the case when pooling is not done. An analysis using
individuals on single arrays (1 on 1) reduces accuracy by �50%.
Pooled designs with biological replication. When the RNA from an
individual contributes to one and only one pool, and many pools
are constructed, the pools can be used to properly assess
biological variation. Pooling extra subjects onto a fixed number
of arrays decreases variability across experiments and provides
a representative list of genes with accuracy similar to the
representative lists obtained without pooling (Fig. 6A). For
example, the representative lists from an analysis of 3 on 3, 6 on
3, or 9 on 3 have similar accuracy. However, the variability across
the 9 on 3 experiments is reduced, resulting in a list for a
particular experiment that has properties near those of the
representative list. Similar results are found for other
comparisons. Reducing the number of arrays in an experiment
without increasing the number of subjects decreases accuracy
(Fig. 6A).
False discovery rate (FDR) control. Designs in Fig. 6A are compared
based on agreement among the top ranking genes for lists with
fixed size. For these comparisons, no consideration of the FDR
associated with each list is made. Results regarding accuracy
are very similar when comparisons are instead made among

Fig. 4. Effects of distortion within and between conditions. (A) The mean
difference between the pools of two and the corresponding averages across
individuals (control condition) as a function of standard deviation (SD) esti-
mated within the control condition (all genes are shown). The units are log
base-2 expression. The percentiles of SD are shown (bottom) along with the
percentage of genes (top) having values in the pools of two that are larger
than the corresponding average across individuals. Genes with values in the
pools that are higher (lower) than the corresponding averages are shown in
blue (purple). For the 25% of the genes with largest SD, �80% have values
larger in the pools of two. Similar results were found by using estimates of
either technical or biological SD. The treatment condition and pools of three
give similar results. (B) The difference between the log fold change (FC) values
(control�treatment) calculated from the pools of two and the individuals for
the genes shown in A plotted as a function of the difference in SD calculated
across conditions. B is unitless because we are considering the difference in log
fold change. Distortion affects both control and treatment and largely cancels
out when FCs are considered resulting in similar FC values in the individuals
and pools.

Fig. 5. DE inferences without biological replication. Expression values from
three genes are shown. Technical replicates for genes 1 and 2 are shown in
columns C1 and C3. By considering these technical replicates only, the first two
genes might be considered DE by some measures (because the averages in
each group are quite different); when biological replicates are considered for
these two genes (columns C2 and C4), it is obvious that the difference in means
is caused by three outliers (first gene) and underestimation of the biological
variance (second gene). DE calls for gene 3 would be the same, whether
considering biological or technical replicates; �, x, and m are defined in Fig. 3.
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lists with fixed FDR. There is one major difference: when
biological replicates are not available and technical replicates
are used, estimates of the variance required for FDR specifi-
cation are incorrect, resulting in many DE calls with very low
accuracy (Fig. 6B). Fig. 6B also provides insight into how the
number of genes identified as DE by an FDR-based criterion
varies among the designs. As the number of arrays decreases
for a fixed number of subjects, fewer genes are identified as
DE. This reduction is expected, because to have comparable
results while decreasing the number of arrays, one must
increase the number of subjects appropriately to maintain a
so-called ‘‘equivalent’’ design.
Equivalent designs. Formulas exist specifying the number of sub-
jects and arrays required in a pooled design so that gene specific
(10) or average (11) estimation efficiency is maintained compa-
rable to a design where pooling is not done and additional arrays
are used (see Supporting Text). Similar formulas hold when

equivalent power is considered. Given the biological and tech-
nical variability in this study, the following designs are equiva-
lent: 100 on 100 vs. 160 on 80; 25 on 25 vs. 42 on 21; 7 on 7 vs.
12 on 6. Fig. 14 shows that there is little difference between the
genes identified from the last designs. However, although the
designs are equivalent on average, gene-specific DE calls are
affected by varying biological and technical variability; and, as a
result, pooling while reducing the number of arrays will be useful
for identifying some genes, at the expense of not identifying
others.

Discussion
Experimental designs using pooled RNA samples are often done
out of necessity or in an effort to reduce the effects of biological
variation, making substantive differences easier to find. Pooled
designs are attractive because they have the potential to decrease
cost due to the fact that a large number of individual samples can
be evaluated using relatively few arrays. Here, we have consid-
ered fundamental properties of various pooling designs to eval-
uate their performance and to determine whether the basic
conditions required for pooling to be useful hold.

The most basic condition is the assumption of biological
averaging. Many investigators conjecture that RNA abundance
levels average out when pooled. This may be true; however,
because of nonlinearities introduced in the generation and
processing of microarray data, an average on the scale of raw
RNA abundance will not necessarily correspond to the average
of the same highly processed RNA measurements. The log
transformation was found to affect �25% of the genes (some
distortion also appears on the raw intensity scale; this is not
considered here because data are almost always transformed
before analysis; refs. 20–25). There may also be implicit trans-
formations that could affect the measurements; despite these, we
found that most expression measurements from RNA pools are
similar to averages of individuals that comprise the pool. For the
majority of genes where there was a large difference, the
difference was similar across biological conditions, resulting in
comparable DE inferences from individuals and pools. Because
of this, pooled designs were never found to perform significantly
worse than nonpooled designs.

For very small designs in which only one or two arrays are
available in each biological condition, pooling dramatically
improves accuracy. Although valid, the results in such small
designs are limited as gene specific variance components cannot
be well estimated and outliers cannot be identified. Designs
involving technical replicates only are similarly limited; and
when used with statistical methods that require estimates of both
biological and technical variability (e.g., FDR-based methods),
they can be very misleading. When the goal of the experiment is
to identify DE genes, investigators should favor biological, not
technical, replicates.

For larger designs where biological replicates are used, pool-
ing is not always advantageous. Accuracy was similar across
designs in both the rank and FDR based analyses when the
number of arrays was fixed and the number of subjects varied.
There is a slight decrease in the variability among the lists of DE
genes identified as the number of subjects pooled increased; but
the modest reduction resulting from pooling two to three
subjects per array is generally not worth the price paid for
loss of individual specific information. A greater advantage
can be gained by pooling a larger number of subjects. For a
fixed number of subjects, reducing the number of arrays
results in decreasing accuracy and fewer genes with small
FDR. This result is expected, because to maintain equivalent
properties, the number of subjects pooled must be increased
appropriately.

An optimal method for specifying equivalent designs will
depend on a number of factors (see Supporting Text). To the

Fig. 6. Design accuracy. (A) Lists of fixed size. Solid lines give the average
performer across 100 subsets; dashed lines give the worst case performer. (B)
Lists with fixed FDR. Each vertical tick on the FDR plot marks 100 genes
identified at the specified level of FDR (see Comparison of Designs for more
details on the construction of each figure). Virtually identical results were
obtained if CEL files were processed by using RMA within pool group (see
Fig. 12).
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extent that simplified models of equivalence hold (10, 11), we
found the following designs to be equivalent for this data set:
100 on 100 vs. 160 on 80; 25 on 25 vs. 42 on 21; 7 on 7 vs. 12
on 6; evidence for equivalence was given in the last case. The
financial benefit of pooling for this particular case is minimal
at best. However, the results demonstrate the potential of
equivalent design specification. For larger designs, the realized
benefit of decreasing the number of arrays can be substantial.
Furthermore, in studies of humans, biological variability is
generally larger than technical variability (28), the condition
that yields a greater reduction in the number of arrays

required. Experiments to estimate gene-specific variance com-
ponents and validate the conditions considered here should
prove quite useful for extrapolating these results to other
systems and addressing other questions of microarray exper-
imental design.
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